Holomorphic K-Theory, Algebraic Co-cycles, and Loop Groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Homotopy Theory, Groups, and K-Theory

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in The Faculty of Graduate Studies Department of Mathematics. LetMk be the category of algebras over a unique factorization domain k, and let ind−Affk denote the category of pro-representable functions from Mk to the category E of sets. It is shown that ind−Affk is a closed model category in such...

متن کامل

Loop Groups and Holomorphic Bundles

This paper considers the links between the geometry of the various flag manifolds of loop groups and bundles over families of rational curves. Aa an application, a stability result for the moduli on a rational ruled surface of G-bundles with additional flag structure along a line is proven for any reductive group; this gives the corresponding stability statement for any compact group K for the ...

متن کامل

Algebraic K-theory of Special Groups

Following the introduction of an algebraic K-theory of special groups in [6], generalizing Milnor’s mod 2 K-theory for fields, the aim of this paper is to compute the K-theory of Boolean algebras, inductive limits, finite products, extensions, SG-sums and (finitely) filtered Boolean powers of special groups. A parallel theme is the preservation by these constructions of property [SMC], an analo...

متن کامل

On Algebraic K-theory Categorical Groups

Homotopy categorical groups of any pointed space are defined via the fundamental groupoid of iterated loop spaces. This notion allows, paralleling the group case, to introduce the notion of K-categorical groups KiR of any ring R. We also show the existence of a fundamental categorical crossed module associated to any fibre homotopy sequence and then, K1R and K2R are characterized, respectively,...

متن کامل

Algebraic Cycles and Completions of Equivariant K-theory

Let G be a complex, linear algebraic group acting on an algebraic space X . The purpose of this paper is to prove a Riemann-Roch theorem (Theorem 5.5) which gives a description of the completion of the equivariant Grothendieck group G0(G,X)⊗ C at any maximal ideal of the representation ring R(G) ⊗ C in terms of equivariant cycles. The main new technique for proving this theorem is our non-abeli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: K-Theory

سال: 2001

ISSN: 1573-0514,0920-3036

DOI: 10.1023/a:1011969420506